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Abstract. This tutorial provides an overview of the PVS strategy language, and explains how to define 
new PVS strategies and load them into PVS, and how to create a strategy package. It then discusses 
several useful techniques that can be used in developing user strategies, and provides examples that 
illustrate many of these techniques. 

1 Introduction 

Why use strategies in PVS? There are several compelling reasons for doing so. We offer a few scenarios below 
that illustrate productive uses for strategies. 

PVS provides a core set of inference rules supplemented by decision procedures and other simplification 
heuristics. Continuing enhancements to the theorem prover gradually increase the automation available to 
interactive users. Nevertheless, the level of automation perceived by users is still much lower than desired. 
This is not a problem peculiar to PVS; similar provers suffer the same limitations. In fact, PVS is among 
the most automatic of provers in its class. 

Strategies provide an accessible means of increasing the automation available to  users of the PVS prover. 
This can be done in generic form, suitable for a wide range of proving tasks, or in specific problem domains, 
yielding specialized tools suitable only in narrow contexts. Development of strategies can be performed by 
end users or specialists whose role is to create strategies for use by others. Over time, strategy development 
can lead to  a reusable body of "deductive middleware." An effective division of labor in the overall conduct 
of mechanical theorem proving is a possible outcome of this process. 

In the following, we provide several examples of strategies that are likely to  be beneficial to  PVS users. 

- Modest strategies to streamline prover use. This is the simplest category of strategies, typically involving 
rules with just a few lines of definition. An example would be introducing rules to  invoke frequently 
occurring sequences of proof commands. Consider the sequence (LIFT-IF), (SPLIT), and (ASSERT). 
One could introduce a strategy named IF-SPLIT to  carry out this sequence. Such strategies are easy to  
create, although their benefit is limited to  saving the effort of repetitive typing. 

- Extended forms of predefined rules. A slightly more advanced approach is to identify commonly needed 
inferences that are guided by user input. By writing strategies that accept arguments, it is possible 
to  create enhanced versions or combinations of rules that already exist in the predefined set provided 
by PVS. In fact, many of the higher level predefined rules were created using the strategy mechanism. 
Consider, for example, a rule to claim that the lefthand sides of two formulae are equal, then invoke the 
appropriate CASE command. We might apply such a strategy using (CLAIM-EQ -1 -3) where CLAIM-EQ 
is the new proof rule and -1 and -3 axe the numbers of the sequent formulae to  be considered. 

- Algebraic manipulation and arithmetic simplification. The PVS decision procedures handle linear arith- 
metic well, but have more difficulty with nonlinear expressions. In such cases, users must apply lemmas 
from the prelude or other sources. Strategies can be effective at manipulating arithmetic expressions 
when guided by user input. The package Manip [5], for instance, provides strategies for conducting user- 
directed manipulations of real-valued expressions. Similarly, the package Field [6] carries out higher level 
arithmetic reduction with considerable automation. 

* Funded under NASA Cooperative Agreement NCC-1-02043. 



Developing User Strategies in PVS: A Tutorial 17 

- Deduction support for specialized models or specifications. Verification or analysis tasks based on theorem 
proving often take place in the context of a specialized model of computation, such as state machines, 
hybrid automata, etc. Proofs in such contexts often have a stylized character that lends itself to automated 
proof. By capturing the proof steps and decision processes in the form of strategies, it is possible to  provide 
a great deal of targeted automation to the proof effort. TAME is an example of such an approach within 
the domain of timed automata. 

- Interfaces to external proof support tools. Occasionally it is desirable to make use of additional tools that 
support the prover in the construction of large or difficult proofs. Strategies in this role can be used as a 
means of accessing the current proof state and exporting information to  an external tool. After computing 
its result, the external tool can supply information to be acted on in some way, such as submitting prover 
commands. An example would be a tool that performs database searches, then returns the names of 
suitable lemmas for possible invocation. PVs’s musimp, model-check, and abstract-and-model-check 
strategies are also examples of this approach. 

- Interfaces to  support external components through proving. The support relationship can work in the 
other direction as well. Under some arrangements, the prover can be used to provide support to an 
external process. For example, a computer algebra system might wish to consult a theorem prover to 
confirm that a transformation it needs to  perform is valid under certain conditions. This request could 
be posed as a set of conjectures sent to the prover, where a strategy-guided proof process would attempt 
to settle the question and return a result. 

These suggested uses of PVS are by no means exhaustive. They are realistic, however. Each of these 
uses has either been implemented or is currently under development. No doubt other applications will be 
discovered. It is our hope that this tutorial might lead others to investigate new possibilities. 

The remainder of this tutorial is organized as follows. Section 2 provides the basic information needed 
for defining your own strategies and making them available in PVS. Section 3 describes and illustrates a 
set of techniques that can be used in the development of user strategies. Section 4 provides examples that 
demonstrate how to use various techniques to develop both strategies that facilitate user interaction with 
PVS and automatic strategies. Finally, Section 5 discusses some additional support that would be useful in 
to  developers of PVS user strategies. 

2 The basics 

2.1 PVS commands. 

PVS commands can be either rules or strategies. A rule is a command that can be invoked by name and 
(if appropriate) applied to arguments. Rules execute as atomic steps in the PVS prover. A strategy is a 
command created by using zero or more PVS strategy-building commands to combine rule applications and 
other strategies. Thus, every rule application is also a (degenerate) strategy. Executing a strategy in the PVS 
prover causes execution of the sequence of atomic steps needed by the strategy for the current subgoal. On 
the syntactic level, the heart of a strategy definition is a strategy expression built by using strategy-building 
command names to combine rule names (applied to  arguments, which may involve variable names) and other 
strategy expressions. 

A representative set of PVS strategy-building commands is listed in Table 1. For short, we will refer to  
these commands as strategicals, in analogy to the tacticals in Coq, HOL, and other theorem provers that are 
used to  combine simpler tactics into more complex ones. 

A simple example strategy that is sometimes useful is: 

(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL)) (1) 

Strategy (1) is useful in determining whether straightforward simplification combined with the PVS decision 
procedures will achieve a goal; if it does not, then the intended behavior of this strategy is to return to the 
proof subgoal in which it is invoked, without generating any new subgoals. Most simple sequential strategies 
do not use (FAIL); because it does so, Strategy (1) can behave badly. In particular, it causes full or partial 
proof failure if none of (LIFT-IF), (PROP), and (ASSERT) has an effect. One way to  ensure the intended 
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(APPLY s t e p )  
(THEN s t ep1  . . . s t e p , )  
(THEN@ step1 . . . s t e p , )  

(IF l i s p - e s p r  s t ep1  s tep21 

(TRY s t ep1  s t ep2  s t e p s )  

(ELSE s t ep1  s t e p z )  
(SPREAD s t e p  ( s t e p 1  . . .  s t e p , ) )  
(BRANCH s t e p  ( s t e p 1  . . . s t e p , ) )  
(REPEAT s t e p )  
(REPEAT* s t e p )  

(WITH-LABELS s t e p  ( l a b s 1  . . . l a b s , ) )  

(LET ( ( v i  l i s p - e s p r l )  . . . 
( w ,  l i s p - e s p r , ) )  s t e p )  

Turns step into a defined rule. 
Applies step1 to step,  in order down all branches. 
Applies step1 to step, in order down the main proof branch. 
If lisp-ezpr evaluates to true then applies step1 . 
Otherwise, applies stepz.  
Tries stepl;  if it modifies the proof state then applies stepz.  
Otherwise, applies steps.  
Behaves as (TRY s t e p 1  (SKIP) s t e p z ) .  
Applies step and spreads step1 to step,  over the new subgoals. 
Like SPREAD but reuses step, on any extra subgoals. 
Iterates step until it does nothing down the main proof branch. 
Iterates step until it does nothing down all branches. 
Applies step; then labels all new formulae in the new subgoals with 
labs1 to labs,. 
Applies a new command that is just like step, but where 
vi has been replaced by the evaluation of lisp-ezpr, for 1 5 i 5 n. 

behavior of Strategy (1) is to use the strategy expression in (1) as the body of a defined rule, as described 
in Section 2.2. Another way is to “wrap” it with the  command APPLY, as in: 

(APPLY (THEN (LIFT-IF) (PROP) (ASSERT) (FAIL))) (2) 

Finally, one may catch the action of FAIL with the command TRY. For more on both TRY and the use of 
wrappers, see Section 3. 

Note that the two strategicals IF and LET allow the introduction of Lisp code into a strategy. Strategies 
that incorporate Lisp code are more sophisticated than Strategies (1) and (2). The Lisp code generally uses 
information about the current proof state, though a few useful things can be done by using Lisp code to 
set and observe global variables. Strategies that use information about the proof state are discussed later in 
Section 3. 

2.2 Defined rules and strategies. 

PVS proof rules are of two kinds: primitive rules and defined rules. Both primitive and defined rules behave 
like atomic steps when applied to appropriate arguments, but, unlike a primitive rule, a defined rule is derived 
from a strategy expression. The strategy expression corresponding to a defined rule can be observed in PVS 
by typing: 

M-x help-pvs-prover-strategy 

Also, the documentation string for a strategy can be viewed within the prover via the command HELP. 

Guide [lo, 111, the format for def step is: 
A defined rule is created by applying the PVS macro defstep. Paraphrased from the PVS Prover 

(def step name 
param e ter- lis t 
strategy-expression 
documentation-string 
format-string ) 

(3) 

The parameter-list, whose precise description can be found in [lo, 111, can contain required arguments plus 
&optional and &rest parts, rather like the parameter list in a Lisp function definition. The documentation- 
string is generally used to describe the effect of applying the strategy; it is printed interactively as part 
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of the documentation of proof steps that is printed by the "help" facilities of PVS, e.g., when one types 
(HELP name) during a proof, or M-x help-pvs-prover or M-x help-pvs-prover-strategy followed by 
name at any time when using PVS. The format-string is printed interactively when the defined rule name 
succeeds, i.e., completes the proof of the current goal, or when it returns one or more subgoals. In addition 
to creating a new defined rule name, the macro defstep also creates a named strategy name$. Variants of 
def step include def helper, which does not require the documentation-string or format-string arguments, 
and defstrat, which does not require the format-string argument. The macro defhelper is intended for 
defining "internal" auxiliary steps that can be used in other strategies, while def strat defines a strategy 
without a corresponding (atomic) defined rule. 

Strategy (1) can be turned into the defined rule PROPPROBE using the definition: 

(defstep PROPPROBE (1 
(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL)) (4) 
"Checks for a trivial proof (IBy simple reasoning") 

Once the definition of PROPPROBE has been loaded into PVS, the desired effect of Strategy (1) can be 
accomplished by just typing (PROPPROBE) when prompted by PVS for a proof rule. Because Strategy (1) does 
not refer to  any unbound parameter names, the effect of (PROPPROBE) is equivalent to that of Strategy (1) 
wrapped in (APPLY . . .). The exact effect of Strategy (l), in which one sees all the steps in the reasoning, 
can be duplicated by typing (PROP_PROBE$) when prompted for a rule. 

By allowing the possibility of parameters, the macro def step allows a strategy (as well as its correspond- 
ing defined rule) to be applied in an environment where the parameter names are bound to  specific values. 
The format-string in the definition of a rule with parameters can refer to these parameters: any inclusion 
of -a in the format string is replaced by the value of an actual parameter, with successive -a's picking up 
successive parameters. 

A simple example of a new rule with all these features is the rule suppose, whose definition is in Figure l.4 
The rule suppose incorporates formula labeling and comments into the simplest version of the PVS command 

(def step suppose (XI 

(nsuppstring 
(let ((suppstring (format nil "Suppose "a" XI) 

(format nil "Suppose not [-a] I' x> 1) 
(branch (with-labels (case x) (("Suppose") ("Suppose not"))) 

( (comment suppstring) (comment nsuppstring) 1) 1 
"For doing a simple case split and tracking the cases" 
"First supposing "a true and then supposing it false") 

Fig. 1. Definition of a rule with a parameter and a format-string that refers to it. 

CASE. The strategy expression body of suppose uses the strategicals LET, WITH-LABELS, and BRANCH. With 
LET, it incorporates Lisp code that computes two comment strings. Using WITH-LABELS, it applies the labels 
from the first list ("Supposen) to  new formulae in the first new subgoal, and the labels from the second 
list ("Suppose not") to  new formulae in the second new subgoal. Since each of the first and second new 
subgoals have just one new formula, and these new formulae represent, respectively, the meanings of x and 
(NOT x) , they are labeled appropriately. The second argument of BRANCH is a list of two commands, which 
will be applied respectively to  the new subgoals. Each of these commands adds its argument as a comment in 
the subgoal to  which it is applied; this comment will appear above the sequent when the subgoal is displayed. 
Each comment will also be recorded in the saved proof at the beginning of the new proof branch starting at 
its associated proof goal. The use of labels and comments will be discussed further in Section 3. 

Though we use a mixture of upper and lower case versions of names in this tutorial, it is safest to use only lower 
case in actual strategy files; see the PVS release notes at http://pvs.csl.sri.com. 
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2.3 

Once you have defined one or more new rules using def step, def strat, or defhelper, you can make your 
new rule(s) available in PVS by saving the definition(s) in a. file named pvs-strategies and putting it 
in the PVS context where you wish to use the new rules. The file pvs-strategies does not need to  be a 
physical file, it can be a link to a file containing your definitions. This way, you can keep a set of definitions 
consistent across several contexts. 

The file pvs-strategies is loaded when the first proof in a session is being started, or when a new 
proof is being started after the content of pvs-strategies has been changed. Because pvs-strategies is 
loaded into Lisp, it can contain arbitrary Lisp code-not only rule definitions, but function definitions, global 
variable initializations, load commands, etc. One use of a load command (that is in fact employed by TAME) 
is to  load a set of strategies specific to  one context that can be generated from some theory in that context. 
Further, if commonstrat is a file containing a set of strategies that you use in all your developments, you 
can load those strategies by putting the line 

Adding new rules and strategies to PVS. 

(load <PATH>/commonstrat") 

in the file pvs-strategies, where <PATH> is the path where the file commonstrat is found. Section 3 
describes some possible uses of functions and global variables. 

For testing purposes, one can introduce strategy definitions directly from the command line: 

(LISP (DEFSTEP strat-name . . .)) 

To redefine one later, recall the previous command input using M-s or M-r, then edit the definition and 
resubmit it. This technique allows for quick tests or explorations of small strategies. 

2.4 Creating a strategy package. 

If a set of definitions is general enough to  be used in several developments or to be used by other PVS 
users, you may want to  pack them as a prelude library extension. The basic functionality of prelude library 
extensions has been available in older versions of PVS. However, it became fully operational and simple 
to  use in PVS 3.1. A prelude library extension is a set of PVS theories, strategies, and Lisp code that are 
available to the user as if they were part of the PVS prelude context. As the developer of a prelude library 
extension, make a directory MyPackage and put the following files in it: 

- Files * .pvs containing PVS theories that your development requires. These theories become part of the 

- A file my-strat containing the new strategies. 
- A file pvs-lib. lisp containing 

PVS prelude theories; therefore, be careful not to  introduce inconsistencies. 

(in-package :pvs) 
;; If your development requires other prelude libraries, then 
;; uncomment the following line and modify it as appropriate. 
;; (load-prelude-library "OtherPackage") 
( 1 i bload 'I my -s t ra t 'I ) 

- A file pvs-lib.el containing Emacs Lisp code that is part of your development. 

Once you have put all these files together, instruct the users of your prelude extension to  

Set the variable PVSLIBRARYSATH to point t o  <PATH>, where 

<PA TH>/MyPa c kag e 

is the actual location of your package. 
Invoke the Emacs command M-x load-prelude-library MyPackage the first time MyPackage is going 
to  be used in a context. Next time that PVS is restarted in the same context, the prelude extension will 
be automatically reloaded in the environment. 
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3 Some useful techniques for strategy writing 

This section describes a set of techniques that can be used by a strategy developer to create sophisticated 
PVS strategies. These techniques include: 

1. Incorporating backtracking with TRY. 
2. Controlling standard PVS steps with appropriate arguments. 
3. Observing the proof state. 
4. Probing the CLOS structure of the proof state. 
5. Defining helper functions in Lisp. 
6. Carefully using global variables. 
7. Computing a command in Lisp, and then invoking it. 
8. Using auxiliary lemmas for rewriting and forward chaining. 
9. Using labels and comments. 

10. Using functions from PVS. 
11. Applying wrappers. 
12. Naming subexpressions of complex expressions. 
13. Using templates. 
14. Comparing proof step definitions using PVS's multiple proof feature. 

The TAME [l] strategies and the strategy packages Manip [5] and Field [6] all employ many or all of these 
techniques. Below, we illustrate how each individual technique can be used to advantage. 

3.1 Using TRY for backtracking. 

Backtracking is a powerful technique for automatic proof search. It enables the restoring of an original proof 
state after an unsuccessful proof attempt. In PVS, backtracking is achieved by a careful crafting of TRY, 
FAIL, and atomic proof rules. 

The TRY command in PVS combines a conditional and a backtracking control structure. As a conditional 
control structure, TRY performs an action based on the progress made by a proof command on the current 
proof state. For instance, the strategy expression 

(TRY (THEN (LIFT-IF) (PROP) (ASSERT)) 
(COMMENT "Progressing . . . 'I) 
(SKIP)) 

applies the proof command (THEN (LIFT-IF) (PROP) (ASSERT)). If it does something, i.e., it modifies 
the current proof state, the comment "Progressing . . . 'I is added to the new proof state. Otherwise, the 
strategy expression performs the proof command (SKIP) and does nothing else. 

On the other hand, the third argument of TRY is a backtracking alternative to  failures signaled in its first 
argument. Failures in TRY'S second and third arguments are propagated out of the command. The following 
semantics, based on an informal set of rules provided by N. Shankar, exposes some technicalities of the 
behavior of TRY. 

We assume that any proof command evaluates to  one of the following states: 

- skip: If the proof states remains unchanged. 
- failure: If a failure is signaled. 
- success: If the current goal is discharged. 
- subgoals: If new subgoals are generated. 
- backtracking: If backtracking is required. 

The evaluation of SKIP, FAIL, and TRY is given by the function 1.1 as follows 

- I (SKIP) I = skip. 
- I (FAIL) I = failure. 
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if [AI E {skip, backtracking} 
if (AI E {failure, success} 

if IAl = subgoals, IBI E {skip, subgoals} 
- I(TRY A B C ) l  = backtracking if IAl = subgoals, IBI E {failure, backtracking} 

subgoals r success if IAl = subgoals, IBI = success 

To complete the description of TRY’S behavior, it is necessary to consider that 

- The states failure and backtracking do not propagate out of atomic proof rules, i.e., if the strategy 

- At the top-level, the state failure forces the theorem prover to exit, while the state backtracking evaluates 
expression of the atomic proof rule S evaluates to either failure or backtracking, then 1st = skip. 

to  skip. 

For instance, 

- I (TRY (SKIP) (ASSERT) (FAIL)) I = failure. 
- 1 (TRY (TRY (FAIL) A B) C D) I = failure. 
- I(TRY (TRY A (FAIL) B) C D)I = ID[, if IAl = subgoals. 
- I(TRY A (TRY B (FAIL) C) D)I = backtracking, if IAl = IBI = subgoals. 

The strategy expression 

(TRY (TRY (THEN (LIFT-IF) (PROP) (ASSERT)) (FAIL) (SKIP)) 
s t ep l  
s t e p 2 1  

applies the proof command (THEN (LIFT-IF) (PROP) (ASSERT)). If that command discharges the current 
goal, then it does nothing else. Otherwise, it backtracks to  the original proof state and attempts a new proof 
with the command step2. Since FAIL does not propagate out of atomic proof rules, Le., it evaluates to  skip, 
the logical behavior of the above strategy expression is equivalent to  that of the strategy expression (APPLY 
(THEN (LIFT-IF) (PROP) (ASSERT) (FAIL))) when s t e p 2  = (SKIP). 

The TRY command is not symmetric: failures signaled in its second argument is not handled in the same 
way as failures signaled in its third argument. This makes the analysis of failure propagation difficult and 
error prone. In particular, some PVS commands, such as THEN, ELSE, REPEAT, SPREAD, etc., are implemented 
with TRY, and their behavior with respect to  failure propagation and backtracking is not easy to  characterize. 
For instance, [(THEN s t e p 1  . . . s t e p ,  (FAIL))I is 

- failure, if n = 0 or IstepiI = skip for 1 5 i 5 n. 
- backtracking, otherwise. 

In general, it is a good practice to  wrap as atomic proof rules the strategy expressions that can generate 
failures. 

For the interested reader, the experimental package Practicals, available at http://research.nianet.org/fm- 
at-nia/Practicals, provides a redesigned set of strategicals for catching and signaling failures, as well as 
additional control structures for programming PVS strategies. 

3.2 Controlling standard PVS steps. 

When one needs finer control in a strategy, one sometimes needs to  use variants of the standard PVS steps 
that do either less or more than the default actions of these steps. For example, the PVS command 

(EXPAND name) 

does not simply expand the definition of name, but performs some simplifications as well. This can be 
inconvenient; e.g., since one of these simplifications can be a (LIFT-IF), it is possible for a quantified 
formula involving an IF-THEN-ELSE to  become an IF-THEN-ELSE with two quantified formulae as branches, 
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complicating a strategy involving skolemization or instantiation. To obtain the effect of simply expanding 
the definition of name, one should instead use the PVS command 

(EXPAND name :ASSERT? NONE). 

Other example PVS steps that can be made to  do less for finer control are SPLIT and FLATTEN. Using 
the optional : depth argument, SPLIT can be prevented from producing more subgoals than one desires. One 
application of this technique is in the definition of the simple strategy modus-ponens: 

(defstep modus-ponens (formnum) 
(spread (split formnum :depth 1) ((skip)(skip))) 
"Replaces antecedent formulae A and A => B by A and B uhen 

"Performing Modus Ponens") 
the formula A => B is labeled by formnum" 

Note that while the PVS rule ASSERT can sometimes be used to  discharge the hypothesis of an implication, 
ASSERT may cause further changes, and it does not discharge a hypothesis that is not a simple expression. 
The rule modus-ponens permits one to discharge the hypothesis of an implication, without doing more (or 
less). 

Because controlling the number of subgoals in a strategy can be important, being able to apply fine 
control to SPLIT is useful. However, one can also apply fine control to  FLATTEN as well. This is done by 
replacing it with FLATTEN-DISJUNCT with an appropriate :depth argument. 

One case in which the default action of a PVS step may be too limited is in a context where there 
is extensive use of CASES expressions. The default of ASSERT and SIMPLIFY is to not simplify inside these 
expressions. This choice often results in more efficient proofs, but experience has shown this may not be true 
when proofs involve large, complex, and possibly many-layered CASES expressions. In such a case, one may 
wish to  use (ASSERT : CASES-REWRITE? T) and (SIMPLIFY : CASES-REWRITE? T) instead. 

3.3 Observing the proof state. 

The PVS proof state and related data structures are represented as classes in the Common Lisp Object 
System (CLOS). In particular, during the execution of any proof in PVS: 

- The current proof state is in the global variable *ps*. 
- The current proof goal is in the global variable *goal*. It can be also accessed as (current-goal *ps*). 
- The list of current sequent formulae, each one an instances of the CLOS class s-f ormula, can be accessed 
as (s-forms (current-goal *ps*)). 

A more comprehensive list of PVS global variables and data structures and the information they contain 
can be found in [lo, 111. 

The proof state (and in fact the value of any Lisp expression) can be observed during a proof using the 
proof command LISP. Thus, to  observe the sequent formulae of the current goal at some point in the proof, 
one can issue 

(LISP (s-forms (current-goal *ps*)>) (5) 

at the top-level. When making extensive observations about the proof state, it can become inconvenient to  
have to  embed all the Lisp expressions to  be evaluated in a LISP command. Another inconvenience of this 
command is that it interleaves the desired information with repetitions of the current proof goal, making it 
difficult to make a coherent sequence of observations. (This applies only to  PVS versions earlier than 3.1.) 
An alternative is to  send Lisp into a break; this can be done by typing (LISP (BREAK)). 

Each s-f ormula in (s-f orms (current-goal *ps*) ) corresponds to  one of the labeled formulae in the 
sequent of the current goal. An example of how a list of sequent formulae appears when displayed is: 

(NOT A B C NOT D E) (6) 
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where A, B, C, D, and E represent particular PVS formulae. The actual members of the list ( 6 )  print out as 
NOT A, B, C, NOT D, E. The list ( 6 )  represents the sequent: 

(or a variant in which some square brackets are replace by curly braces). In particular, the negative formulae, 
in order, correspond to the sequent formulae numbered -1, -2, and so on, while the positive formulae, in 
order, correspond to the sequent formulae numbered 1, 2, and so on. In general, the list of antecedent 
(negative) formulae and consequent (positive) formulae can be extracted from the proof state as (n-sf orms 
(current-goal *ps*) ) and (p-sf orms (current-goal *ps*)), respectively. 

Note that formulae in the antecedent, such as A and D in the sequent (7), appear negated in the represen- 
tation of the PVS proof state. The following Lisp code retrieves a formula in positive form, i.e., as it appears 
to the user in the PVS theorem prover, from the formula n ~ m b e r : ~  

; Get formula from current goal (unnegated if antecedent formula) 
; Assumes that fnum is a formula number 
(defun get-fnum (fnum) 

(let ((index (- (abs fnum) I)> 
(goal (current-goal *ps*))) 

(formula (nth index (p-sforms goal))) 
(argument (formula (nth index (n-sf orms goal) ) ) ) ) ) ) 

(if (> fnum 0) 

To determine that one needs argument and formula to  extract the desired part of an s-f ormula in (p-sf orms 
goal) and (n-sf orms goal), one can use technique 4 described in Section 3.4. 

The inverse of the operation get-fnum is to find the formula number or numbers corresponding to  
formulae with a given property. The PVS Lisp function (gather-fnums s-forms yes-fnwns no-fnwns 
p r e d ) ,  described in [lo, 111, returns the list of formula numbers (taken from yes-fnumslno-fnums) of sequent 
formulae in s-forms that satisfy pred. For example, given the property 

(defun is-fora11 (sform) (forall-expr? (formula sform))) 

the Lisp code: 

retrieves all the formula numbers in the current sequent that are universally quantified. 
(gather-fnums (s-form *goals*) ' *  nil #'is-forall) 

3.4 Using CLOS probes. 

Most values manipulated by PVS proof steps are CLOS objects. For instance, *ps* is a CLOS object which 
has a component current-goal; in turn, (current-goal *ps*) is a CLOS object which has a component 
(s-f orms (current-goal *ps*)). To probe the CLOS structure of an object and its components, one can 
use the Lisp functions describe or show. Given an object object, one can probe its CLOS representation in 
depth by repeatedly using describe to  discover components to  be probed further: 

(describe object) 
(describe (component object) 
(describe (component (component object) ) ) 
. . .  

More involved versions of this function that take care of special symbols, labels, and error han- 
dling are available in the Manip (http://shemesh.larc.nasa.gov/people/bld/manip.html) and Field 
(http://research.nimet.org/-munoz/Field) packages. 
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The function describe provides explicit names of the component slots in the representations of objects, 
and these names can then be used like function names to retrieve the elements in these slots, which are 
themselves objects. The description of object starts with a sentence of the form: 

object is an instance of #<STANDARD-CLASS object-class> 

This information generally tells you that object-class? is a recognizer for objects of class object-class. An 
element x of class object-class can also be recognized by the fact that (typep x object-class) will be true. 

When one needs a shortcut to a sequence of CLOS probes, or when one cannot be sure of the sequence 
or sequences needed, one can use the function mapobject. The function mapobject provides an analog for 
objects of mapcar for lists: it traverses (most of) the object structure, applying a given function to each 
component. Thus, to determine whether an s-formula sf orm contains a universal or existential quantifier, 
one can use the predicate has-quantif ier, defined as: 

(def un has-quant if ier (sf orm) 
(let ((has-quant nil)) 

(mapobject #'(lambda (x) (if has-quant t 
(when (or (forall-expr? x) 

(exists-expr? x)) 
(setq has-quant t) t))) 

sf orm) 
has-quant)) 

3.5 Defining helper functions. 

Helper functions from Lisp are useful for writing strategy expressions that involve Lisp code, i.e., those using 
either LET or IF. They generally involve CLOS probes into the current proof state; thus, we have already 
seen the following examples of potential helper functions in Sections 3.3 and 3.4: 

- get-fnum 
- is-forall 
- has-quant if ier 

The helper function get-fnum is used in a LET in the strategy add-eq in Figure 12 below in Section 4.1. 
Examples of definition and use of additional helper functions can be found below in Section 4.2. 

One can classify Lisp helper functions into general purpose and special purpose functions. General pur- 
pose helper functions include functions such as get-fnum and is-forall, which can be applied, respec- 
tively, to any valid formula number (or label) and to any valid s-formula. An example of a special purpose 
helper function is the function getsk-constructor-exprs from Figure 18 in Section 4.2. The function 
get-sk-constructor-exprs will cause a Lisp break if it is called incorrectly; it must be called only on s- 
formulae of a very limited form. Special purpose helper functions generally use CLOS probes that are either 
unusual or grouped in a long series, making them hard to  match. Thus, extra care must be taken when these 
functions are used: they should either be used in a context where they are known to be valid (as in the 
example in Section 4.2, or else a strategy should test the classes of a CLOS structure and its substructures 
before applying them. 

Alternatively, helper functions can take advantage of Common Lisp's exception handling features to  deal 
with errors. While the language specification 1121 explains these features in full detail, the following idiom 
based on the handler-case macro is sufficient for most applications: 

(handler-case 
<expression> 

(error (condition) <alt value/action>)) 

If the evaluation of <expression> proceeds normally, its value is returned as the value of the handler-case 
construct. If the evaluation of <expression> raises any type of Lisp error, it will be caught and the <alt 
value/act ion> will be returned/performed. 
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3.6 Using global variables. 

As in any type of programming, global variables must be used carefully in PVS. Clearly, two rules should 
be followed: 

1. Choose variable names not already in use; 
2. Never change a predefined PVS global variable, such as *ps* or *goal*. 

Towards satisfying rule 1, one can easily test whether a variable x is currently in use: either type the command 
(LISP x) when the prover is running, or else type x into the *pvs* buffer when the prover is not running. 
For run-time use, the Lisp functions boundp and fboundp are available to test whether a symbol is currently 
bound as a variable or a function. Note that if one violates rule 2 by changing *ps*, even if the new value 
of *ps* is a valid proof state object, one is creating a nonconservative extension of PVS, and losing PVS’s 
soundness guarantees. 

In general, global variables should be avoided. However, they can be useful as switches. In TAME, for 
example, the user can control whether saved proofs will be in verbose form (recording specific facts introduced 
in the proofs), or in bare-bones, nonverbose form, by invoking the rules (VERBOSE) and (NONVERBOSE) . These 
rules work simply by setting a specific global variable to t or nil. 

3.7 

When a strategy definition has parameters, it can happen that the proof step the strategy is to  implement 
depends on some information that must be computed from the parameter values. 

A typical example is when the strategy definition has an &rest parameter. When the strategy (or corre- 
sponding defined rule) is applied, the &rest parameter is bound to  a list of actual parameters. The strategy 
will typically need to extract the car and cdr of this list as it proceeds. Because proof rules cannot be 
applied directly to  car  or cdr expressions, commands involving the application of proof rules to  the car or 
cdr of a list of actual parameters must be first computed and then called. Examples where this technique is 
used are in the definitions of the strategies apply-lemma, else*, and rewrite-one in Figures 7, 8, and 9, 
respectively, in Section 4.1. (Note that apply-lemma computes two commands, lemma-step and inst-step, 
though actually, only inst-step, which depends on the &rest parameter, needs to be computed.) 

Another example in Section 4.1 in which commands are computed is in the strategy add-eq in Figure 12. 
Here, two commands case-step and steplist are computed. Because case-step applies CASE to  values 
computed from its formula-number arguments, it must be computed. Here again, one of the steps, steplist, 
need not be computed. However, note that “unnecessary” computation of a step often adds to  the readability 
of a strategy definition, particularly when companion steps must be computed. 

3.8 

PVS provides a variety of steps for controlling the use of rewrites. An example of a strategy that takes 
advantage of PVS’s REWRITE rule is rewrite-one in Figure 9 on page 33. The strategy rewrite-one does 
rewriting once using its lemma arguments as the rewrite rules. 

For automatic or “large step” strategies, it is useful to  do auto-rewriting. Auto-rewriting on a set of 
lemmas can be initiated by calling AUTO-REWRITE on a list of the lemmas. Similarly, auto-rewriting on a set 
of lemmas can be terminated by calling STOP-REWRITE on a list of the lemmas. Rather than explicitly listing 
lemmas, it can be convenient to collect a set of rewrites into a theory, and calling AUTO-REWRITE-THEORY 
(and STOP-REWRITE-THEORY) on that theory. Any lemmas installed as auto-rewrites will be used as rewrites 
whenever DO-REWRITE is called. Since ASSERT and SIMPLIFY call DO-REWRITE, these two PVS strategies 
also cause auto-rewrites to be performed. Auto-rewrites must clearly be used carefully, to avoid possible 
nontermination of rewriting. 

Rewrites in PVS can be conditional rewrites, where a rewrite rule is applied only if its condition simplifies 
to  TRUE. Lemmas with conditions (i.e., hypotheses) can also be used for forward chaining, in which the 
(possibly parameterized) hypothesis is matched to some formula or formulae in the current sequent. Any 
match defines an instance of the conclusion, that is then added as an antecedent formula to  the current 
sequent. The PVS rule FORWARD-CHAIN allows forward chaining on a lemma (or on a formula in the current 
sequent). Note that using REPEAT or REPEAT* in combination with FORWARD-CHAIN can lead to nontermination 

Computing the command to be invoked. 

Rewriting and forward chaining with lemmas. 



Developing User Strategies in PVS: A Tutorial 27 

if the conclusion of the lemma used for forward chaining matches its hypothesis; therefore, care must also 
be taken in using repeated forward chaining. There is currently no FORWARD-CHAIN-THEORY, although one is 
expected to  be available in the near future [9]. 

There are many uses for rewriting and forward chaining; for example, TAME uses both auto-rewriting 
and forward chaining to automate certain reasoning about the relationships between constructor and accessor 
functions in DATATYPES that is not handled by ASSERT or GRIND. 

3.9 Using labels and comments. 

A simple use of comments and labels in a strategy has already been illustrated in Figure 1, which shows the 
definition of the strategy suppose. This strategy uses WITH-LABELS to introduce a set of labels simultaneously, 
and the command COMMENT is for introducing comments. There is also a command LABEL for introducing a 
single label. 

Labels are applied to  formulae. Once a formula has a label, it can be referred to by that label. This fact 
has many uses in strategies. For example, a labeled formula can be hidden and revealed by calling HIDE 
and REVEAL on its label. One use of this device is to  prevent expansion of definitions in the labeled formula 
except when such expansion is desired. Another example use for labels is to  coordinate skolemization of one 
quantified formula with instantiation of another. It is possible to give a formula multiple labels by using 
the optional argument :push? T with either WITH-LABELS or LABEL. This allows all information in original 
labels to be retained, while adding new information, so that formulae can, if desired, be included in multiple 
categories for multiple purposes. The use of labels can also increase the stability of strategies. For simplicity, 
several example strategies in this tutorial use explicit references to formula numbers (see Sections 3.10 and 4). 
However, provided one knows the number, ordering, and nature of the new formulae that will be created by 
a command, by wrapping that command using WITH-LABELS and an appropriate list of labels, one can avoid 
explicit formula number references. On the assumption that the ordering in the set of newly created formula 
is less likely to change in new PVS versions than the explicit formula numbers that will be assigned to  the 
new formulae, user strategies using WITH-LABELS and label references will be less fragile than those using 
explicit formula number references. An example of how labels appear in a sequent is shown in Figure 2, 
which shows a subgoal from a TAME proof for the invariant lemma lemma5 of TIP [4,3]. 

{-i,(pre-state-reachable)) 

{-2,(inductive-hypothesis)) 

{-3, (general-precondition) 1 

{-4,(specifi~-precondition)> 

I-5, (post-state-reachable)) 

reachable (prestate) 

length(mq(basic (prestate) 1 (e-theorem) 1 <= 1 

enabled-general(add-child(addE-action), prestate) 

enabled-spec if ic (add- child ( addE- ac t i on) , pre st at e) 

reachable (post st ate) 

{l,(inductive-conclusion)) 
I ------- 

I F  NOT (mq(basic(prestate)) (ads-action) = null) 
THEN length(mq(basic(prestate)) WITH 

[(ads-action) := 

(e-theorem) 1 
cdr(mq(basic (prestate)) (ad&-action) 11 

ELSE length(mq(basic (prestate) (e-theorem) 
ENDIF 

<= 1 

Fig. 2. An example TAME sequent illustrating labels. 
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In contrast to  labels, which attach to formulae, comments attach to subgoals. Note that subgoal in 
Figure 2 also contains a comment which identifies the case to  which the subgoal corresponds. Comments also 
appear in saved proofs, immediately after the command that introduces them. When a command creates 
branches, it is possible to  "label" the branches in the saved proof with comments by wrapping the command 
creating the branches in a SPREAD or BRANCH construct that then applies multiple calls to  COMMENT to  the 
branches, as illustrated in Figure 1 on page 19. An example saved proof showing how comments can be 
used to make saved proofs more understandable is shown in Figure 3, which shows the saved TAME proof 
of the the TIP property lemma-5. The subgoal in Figure 2 is the first subgoal of the first branch of the 
proof in Figure 3, so the comment in this subgoal "labels" the first branch of the proof. The saved proof in 
Figure 3 illustrates the effect of suppose, and also shows that comments can be used to capture ephemeral 
information from proof goals, such as facts being used in the reasoning. 

Inv-S(s:states) : boo1 = (FORALL (e:Edges): length(mq(e,s)) <= 1); 
... ,,, 
( 1 1  11 

Proof lema-5-like-hand for formula tip-invariants.lemma-5 

(AUTO-INDUCT) 
(("1" ; ;Case add-child(addE-action) 

( APPLY-SPECIFIC-PRECOND) 
;;Applying the precondition 
; ; init (target (addE-action) , prestate) 
;; & NOT (mq(addE-action. prestate)=null) 
(SUPPOSE "e-theorem = addE-action") 
( (til't ; ;Suppose e-theorem = addE-action 

(11211 ; ;Suppose not [e-theorem = addE-action] 
(TRY-SIMP)) 

(TRY-SIMP) 1) 1 
(11211 ; ; Case children-known (childV-action) 
(SUPPOSE "source (e-theorem) = childV-action") 
( (ftlgf ; ;Suppose source (e-theorem) = childV-action 
(APPLY -SPECIFIC-PRECOND) 
;;Applying the precondition 
;;init(childV-action, prestate) 
;; 8 
;; (FORALL (e: Edges): 
.. t ,  FORALL (f : tov(chi1dV-action) 1 : 
* ,  . .  child(e, prestate) OR child(f, prestate) OR e = f) 
(APPLY-INV-LEMMA "2" "e-theorem") 
;;Applying the lemma 
; ; (FORALL (e: Edges) : init(source(e), prestate) 
;; => mq(e, prestate)=null) 
(TRY-SIMP)) 

(TRY-SIMP) 1) 1 
(1t291 ; ;Suppose not [source(e-theorem) = childV-action] 

("3" ; ;Case ack(ackE-action) 
(SUPPOSE "e-theorem = ackE-action") 
( (*tlft ; ;Suppose e-theorem = ackE-action 
(APPLY-SPECIFIC-PRECOND) 
;;Applying the precondition 
; ;NOT (init (target (ackE-action) , prestate)) 
;; & NOT (mq(ackE-action, prestate) = null) 
(TRY-SIMP)) 

(TRY-SIMP) 1) 1) 1 
(1t211 ; ;Suppose not [e-theorem = ackE-action] 

Fig. 3. A verbose TAME proof illustrating comments in a saved proof. 



Developing User Strategies in PVS: A Tutorial 29 

3.10 

As illustrated in Section 3, one can use PVS Lisp functions documented in [lo, 111 in writing Lisp code to  
be used in strategies.6 These documented functions can be a convenience in writing Lisp code, but one 
can generally achieve the same effects in one's Lisp code by combining standard Lisp constructs with CLOS 
probes. For example, the effect of the code in 8 on page 24, which solves the problem of listing all formula 
numbers in a goal corresponding to  quantified formulae, can also be achieved by the code 

Using Lisp functions from PVS. 

(gather-fnums-property 'is-forall (current-goal *ps*)) (9) 

where gather-fnums-property is defined by: 

(defun gather-fnums-property (prop goal) 
(let ( (negf nums 

(let ((fnum 0)) 
(loop for x in (n-sforms goal) do (setq fnum (- fnum 1)) 

when (funcall prop x) collect fnum))) 
(posf nums 
(let ((fnum 0)) 
(loop for x in (p-sforms goal) do (setq fnum (+ fnum 1)) 

when (funcall prop x) collect fnum)))) 
(append negfnums posfnums))) 

However, there are PVS Lisp functions that are not formally documented that allow one to  solve problems 
in ways not so easily duplicated. 

Consider the following problem. PVS expressions that are parameters to proof commands are input as 
strings. In general, these expressions are built from other expressions in the proof state, where they appear 
as CLOS structures, and converted to strings with the Lisp function format. In some special cases, we 
may want to  perform the inverse operation, i.e., to get a CLOS structure from the string representation of 
a PVS expression. A simple way to  achieve this operation is to  bring the PVS expression to  the proof state, 
for example using a harmless (CASE " e x p r  = e x p r l l ) ,  and then observing the CLOS structure of the proof 
state as explained in Sections 3.3 and 3.4. The following piece of code implements this technique 

(LET ((casestr (format nil "(-A) = ("A)" expr expr))) 
(THEN 
(CASE casestr) 
(LET ((closexpr (argsl (get-fnum -1)))) 

(THEN 
(DELETE -1) 

(. . . closexpr . . . )>)>) 
;; c l o s e x p r  i s  t h e  CLOS r e p r e s e n t a t i o n  of e x p r  

The code above (which makes use of the documented PVS Lisp function argsl) has the side effect of 
temporarily modifying the proof state. In most cases, the modification has no logical consequences. However, 
if expr generates TCCs, these TCCs will appear in the new proof state. 

An alternative, cleaner way to get a CLOS structure of a PVS expression is by using the PVS parser and 
type-checker functions pc-parse and pc-typecheck directly. These functions are not properly documented 
and they must be used with care; otherwise, the PVS prover could get into an unstable state. The func- 
tion (pc-parse e x p r  g r a m t y p )  returns a non-type-checked CLOS structure of the expression expcpr. The 
parameter g r o m t y p  is a grammar nonterminal, in most cases with the same name as the CLOS type of the 
structure to  be parsed. For instance, 

(pc-parse I f (#  x:=l, b:=true #)'I 'expr) 

An API document that covers all the Lisp calls needed for strategies and integration with other tools is being 
written at SRI [7].  
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returns the CLOS structure corresponding to the PVS record (# x:=l, b:= true #I.  On the other hand, 

(pc-parse 'I [# x : int , b : bool #I 'I ' type-expr) 
returns the CLOS structure corresponding to  the PVS type record C# x: int , b : bool #I .  CLOS structures 
should not be used in a proof state unless they are appropriately type-checked. The function (pc-typecheck 
c l o s e x p r )  adds PVS type information to  the CLOS structure c l o s e x p r .  Usually, a call to pc-parse is 
followed by a call to pc-typecheck. 

An example where converting a string to a CLOS structure in this fashion is useful is in defining a 
strategy whose behavior depends on the type of one or more of its arguments. Provided the string x names 
a valid expression that is type correct in the current proof goal, the value of 

(type (pc-typecheck (pc-parse x 'expr))) (10) 

will be the (CLOS representation of the) type of that expression. (Note that type is a CLOS probe-i.e., 
the name of a slot or method-rather than a function from PVS.) The string 

(princ-to-string (type (pc-typecheck (pc-parse x 'expr)))) 

can then be compared to any specific type name represented as a string, or, more safely, the (not yet 
documented) PVS Lisp function tc-eq can be used to  compare the type (10) with another (analogously 
computed) type. 

3.11 Applying wrappers. 

Wrappers are strategicals that prevent their strategy arguments from causing unintended effects. We have 
already seen one example use for wrapping: wrapping a command that may lead to  failure in (APPLY . . . ) 
so that any failure caused will be local (undoing the proof only to the subgoal where the command was 
applied). 

Another instance in which one may wish to use a wrapper is when a strategy has potential side effects, 
for example through the use of auto-rewrites or global variables, and one wishes to  be sure no permanent 
side effects result from execution of the strategy. Even a strategy that ultimately follows every auto-rewrite 
command with an appropriate corresponding stop-rewrite command can leave "dangling rewrites" active if 
it produces multiple branches and proves the last branch before it reaches a needed stop-rewrite command. 
In such a case one can wrap the strategy, together with a "cleanup step" that removes any potential side 
effects, in the strategical unwind-protect defined in Figure 4. To protect against auto-rewrites remaining 

(defstep unvind-protect (main-step cleanup-step) 

((then (delete -1) main-step) 
(spread (case "id(true)") 

(then cleanup-step (expand 'id" 1)))) 
"Invoke MAIN-STEP folloued by CLEANUP-STEP, vhich is performed 

"Invoking proof step with cleanup") 
even if MAIN-STEP leads to a proof of the current goal." 

Fig. 4. An example "safety wrapper" strategical. 

unintentionally active, the cleanup-step argument to  unwind-protect can be a strategy that performs the 
needed sequence of stop-rewrite commands. 

3.12 Naming a subexpression. 

Field axioms, such as associativity, commutativity, distributivity, etc., are known to the PVS decisions 
procedures. For instance, the sequent 
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I - - - - - - - 
(1) x * x >= 0 

is automatically discharged by the proof command (GRIND). Surprisingly, the sequent 

1 ---- - -- 
(1) (x - 1) * (x - 1) >= 0 

is not discharged by (GRIND). In this case, G R I N D  yields the sequent: 

I - -- - -- - 
(1) 1 - x +  ( x * x - x )  > = o  
which is not further simplified by the PVS decision procedures. 

The reason for this behavior is that the decision procedures always apply fields axioms, and in partic- 
ular the distributive law, before other simplifications. Since PVS does not provide an explicit mechanism 
to customize these simplifications, they can be problematic for writing strategies where proof control is 
fundamental. 

One way to avoid certain implicit simplifications, such as the distributive law, is to wrap a subexpression 
in an application of the identity function, e.g., id(x - 1). This renders the expression ineligible for the 
distributive law. When this protection is no longer desired, the id function can be expanded to restore the 
original expression. For simple cases this technique is often adequate. 

For more advanced uses, undesired simplification can be avoided by naming the expression that should not 
be simplified. This can be achieved with the commands NAME and REPLACE, or the command NAME-REPLACE. 
The commands NAME introduce a new name definition to  the current sequent. This name is then used by 
REPLACE to  abbreviate the original expression. 

Figure 5 illustrates a strategy that blocks the first application of the distributive law in a formula by intro- 
ducing a new name. The strategy NODISTR uses helper functions get-fnum, get-newname, get-distr-expr, 
and get-distr-plus. The function get-fnum (see Section 3.3) gets the formula in the formula number 
fnum. New names are created by the function get-newname, which increments the global variable newname 
each time a new name is required. Finally, the functions get-distr-expr and get-distr-plus descend the 
formula tree to  find the first expression having the form (z + y) * z or z * (z + y). These functions use PVS 
functions inf ix-application? that checks if a formula is an infix application, name-expr? that checks if 
an operator is a name (as opposed to  a lambda expression), and argsi and args2 that projects the first and 
second argument of an application, respectively. 

For instance, (NODISTR 1) applied to the sequent 

I - --- -- - 
(1) (x - 1) * (x - 1) >= 0 

(-1) 

(1) 

yields the sequent? 

(x - 1) = v7-- 

v7-- * v7-- >= 0 
I -- - --- - 

When strategies introduce new names automatically, there is the possibility of conflicts with user sup- 
plied names. To prevent such clashes, we recommend following a naming convention that yields distinctive 
identifiers. For example, the convention followed by the function get-newname is to  create identifiers with 
two trailing underscore characters. 

The strategy NODISTR can be used to improve the automation provided by GRIND on the field of real 
numbers. For example, the simple strategy GRINOD in Figure 6 discharges, among others, the following 
sequent 

(1) 

’ The name of the new variable may be different. 

FORALL (x: real): (x - 1) * (x - 2) * (x - 1) * (x - 2) >= 0 
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;; Strategy definition 
(def strat NODISTR (f num) 
(LET ((form (get-fnum fnum)) 

(name (get-neuname) ) 
(expr (get-distr-expr form)) 
(str (when expr (format nil "-At' expr)))) 

(IF str (NAME-REPLACE name str :hide? nil) (SKIP))) 
"Introduces a new name in -A to block the distributive law") 

;; Generating new names 
(setq newname 0) 

(defun get-newname 0 
(progn (setq newname (+ 1 newname)) 
(format nil "v-A--" newname) ) ) 

;; Helper functions 
(defun get-distr-expr (form) 
(when (and (inf ix-application? form) 

(let ((op (id (operator form)))) 
(name-expr? (operator form) ) ) 

(cond ((member op ' (= <= >= < > + - /)) 
(or (get-distr-expr (argsl form)) 

(get-distr-expr (args2 form)))) 
((eq op '*) 
(or (get-distr-plus (argsl form)) 

(get-distr-plus (args2 form)))) 
(t nil))))) 

(defun get-distr-plus (form) 
(when (and (infix-application? form) 

(let ((op (id (operator form)))) 
(name-expr? (operator form))) 

(cond ((member op ' ( +  -1) form) 
((member op ' ( *  /)) 
(or (get-distr-expr (argsl form)) 

(get-distr-expr (args2 form)))) 
(t nil))))) 

Fig. 5. Naming a subexpression to block the distributive law 

(defstrat CRINOD (fnum) 
(THEN (SKOSIMP fnum) 

(REPEAT (NODISTR fnum)) 
(GRIND :theories "real-props") 

"Blocks the distributive law in 'A before applying GRIND") 

Fig. 6. Combining NODISTR and GRIND 
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3.13 Using templates. 

The use of templates is an indirect technique that can be used in strategy development. For example, when 
one is reasoning in a special domain, one may wish to  assume some degree of uniformity either in the objects 
about which one is reasoning or in the formulations of properties of these objects (or both). Templates allow 
one to enforce a standard naming scheme for objects and their types or a standard scheme for expressing 
properties. As a result, strategies based on templates can be based on a certain amount of definite information 
that allows them to make more reasoning automatic, and thus to achieve larger size proof steps. 

Templates for both specifications and lemmas are used to advantage by TAME. 

3.14 

For proof steps that do a significant amount of automatic reasoning, and which therefore can take a long 
time to  execute, efficiency is an important design goal. Once one has designed a strategy that achieves an 
intended purpose, one can compare the strategy for efficiency against alternate versions by saving proofs 
that, use the different versions. The saved proofs include run time information that can be used for efficiency 
comparison. 

Comparisons for efficiency should be done over several examples, as there are often tradeoffs in the choice 
between two near-optimal versions of a strategy. Note that the PVS command TIME, which is similar to 
APPLY in that it turns a strategy into an atomic rule, has the additional effect of giving timing information 
for any branches created by the strategy on which the strategy does not terminate. Thus, TIME provides an 
additional resource in studies of efficiency: it can be used for strategy efficiency comparisons between the 
cases in the branches a strategy generates. 

Using PVS’s multiple proof feature. 

4 Examples of strategy design 

In this section, we provide several examples to  further illustrate the kinds of reasoning steps that can be 
supported with PVS strategies, and to  provide new PVS strategy developers with some useful ideas that 
they may wish to  recycle in their own strategies. 

4.1 Some small-step strategy examples 

The example strategies in this section are geared towards carrying out tasks during interactive proving, and 
can be viewed as providing slightly more powerful versions of existing prover rules. Included are examples 
Of: 

- capturing a commonly used pattern of steps within a single step, 
- using TRY together with recursion to  define a step that iterates a command over the list of arguments to  

- forking a “proof obligation” proof to  simplify introducing a fact (as a conjecture) on the current proof 

- creating a new arithmetic reasoning step that is not supported by any standard PVS proof step. 

the step, 

branch, and 

Several of these examples also illustrate techniques from Section 3, including computing and then executing 
a command, use of CLOS probes into the proof state, use of Lisp helper functions, and use of PVS functions. 

Figure 7 shows a modest strategy apply-lemma that invokes a lemma after accepting a list of expressions 
for instantiating the variables. The strategy expands into a prover command of the form: 

(THEN (LEMMA name) (INST -1 expr-1 ... expr-n)) 
Note that the bindings of the LET construct in apply-lemma could have been written using Lisp’s backquote 
feature: 

(let ( (lemma-step ‘ (lemma ,lemma) 1 
(inst-step ‘(inst -1 ,@exprs))) 

(then lemma-step inst-step)) 
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(defstep apply-lemma (lemma &rest exprs) 
(let ((lemma-step (list 'lemma lemma)) 

(inst-step (cons 'inst (cons -1 exprs)))) 
(then lemma-step inst-step)) 

"Apply a lemma with explicit variable instantiations. 
Lemma variables appear in alphabetical order when introduced 
by the LEMMA rule. 
entering EXPRS . It 

That order needs to be observed when 

Il"%Invoking lemma -A on given expressions") 

Fig. 7. Applying a lemma and instantiating its variables. 

(defstep else* (&rest steps) 
(if (null steps) 

(skip) 
(let ((try-step ' (try , (car steps) 

(skip) 
(else*$ ,B(cdr steps) 1) 1 

try-step) 
"Try STEPS in sequence until the first one succeeds." 
""%Trying steps in sequence") 

Fig. 8. Generalization of the prover's ELSE strategical. 

In many cases this type of notation simplifies the coding effort and improves readability. We will make use 
of it in the remaining examples. 

Figure 8 illustrates a basic strategy pattern for trying a series of actions until one succeeds. When the 
first step is encountered that has an effect on the proof state, the strategy terminates without attempting any 
of the remaining steps. ELSE* can be thought of as a generalization of the prover's built-in ELSE strategical. 
It is likely to  be useful as a building block for higher level strategies. 

The TRY strategical together with recursive invocation is employed to achieve the effect of conditional 
iteration. For each element of argument STEPS, if trying the step has no effect, ELSE* is invoked again on 
the remaining steps. TRY is applied to  achieve the following general scheme: 

(TRY current-step (SKIP) recursive-invocation) 

Note the use of the strategy form (ELSE*$) rather than the rule form (ELSE*) in the recursive invocation. 
This is a convention often followed in PVS strategies. It ensures that when the top-level command is invoked 
as a nonatomic strategy, all subordinate strategies will be as well, resulting in a full expansion into predefined 
rules. 

(defstep rewrite-one (fnums &rest lemmas) 
(if (null lemmas) 

(skip) 
(let ((try-step 

'(try (rewrite ,(car lemmas) ,fnums) 
(skip) 
(rewrite-one$ ,fnums ,B(cdr lemmas))))) 

try-step)) 
"Try rewriting LEMMAS in sequence within FNUMS until the 

""%Trying lemma rewrites in sequence") 
first one succeeds. I' 

Fig. 9. Using the pattern for ELSE* in a more concrete setting. 
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, Figure 9 demonstrates how the pattern of ELSE* can be applied to a more concrete objective. Given a 
list of lemma names, REWRITE-ONE tries to rewrite with each lemma in turn until one is successful. It also 

the same recursive pattern presented in Figure 8. (See Section 3 for more on the use of term rewriting in 
, provides an argument FNUMS to  control which part of the sequent should be subject to rewriting. It follows 

PVS.) 

(defstep claim-cond (cond) 

(steplist 
(let ((case-step (list 'case cond)) 

(list ' (skip) 
'(try (then (grind) (fail)) 

(skip) 
(skip-msg "Claim justification not proved" 

t))))) 
(spread case-step steplist)) 

"Try claiming a condition holds. 
step is attempted using (GRIND)." 

A proof of the justification 

""%Claiming the condition "A holds") 

I Fig. 10. Claiming a condition and trying to prove its justification. 

I 
I 

Figure 10 illustrates a different use for the TRY strategical. In CLAIM-COND, we wish to  accept a PVS 
expression COND as a condition that holds in the current goal and introduce it as a new antecedent formula. 
We would also like to  automatically prove that the condition holds. 

To carry out this task, we use CASE to  introduce the supposition, then apply GRIND on the second branch 
generated by CASE to prove that COND holds. If GRIND fails to completely prove the justification, we undo 
the partial proof and leave it to  the user to determine how to proceed. This behavior is obtained using the 
following scheme on the second branch generated by CASE: 

I 

(TRY (THEN (GRIND) (FAIL)) (SKIP) (SKIP-MSG message t)) 

Backtracking via FAIL is performed if the subgoal is not completely proved. In this case the SKIP-MSG rule 
is invoked to  display a message to the user that the justification proof did not succeed. 

To direct the branching of the proof into subgoals, the SPREAD strategical is used. The first argument to  
SPREAD is a step that causes branching, which is CASE in this instance. The second argument is a list of steps 
for the follow-up actions to be performed for each subgoal. The second subgoal represents the justification 
proof for the claim, where the TRY construct is applied. 

i 

(defstep equate-terms (lhs rhs) 
(let ((case-eq (list 'case 

(format nil " ( -A)  = ( - A ) "  lhs rhs))) 
( s tepl is t 
(list '(replace -1 :hide? t) 

'(try (then (grind) (fail)) 
(skip) 
(skip-msg "Equate justification not proved" 

t))))) 
(spread case-eq steplist)) 

"Try equating two expressions and replacing the LHS by the RHS. 

"-%Equating two expressions and replacing") 
A proof of the justification step is attempted using (GRIND)." 

Fig. 11. Claiming two terms are equal and carrying out replacement. 
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Figure 11 follows the same pat,tern as found in Figure 10. EQUATE-TERMS accepts two PVS expressions 
that are claimed to  be equal, then substitutes one for the other. A new antecedent equality LHS = RHS will 
be added as a claim. REPLACE is applied to substitute RHS for LHS. Then a justification proof to  establish the 
equality is carried out in the same manner as CLAIM-COND. 

Forming the CASE command requires some string manipulation, which is implemented using Lisp's FORMAT 
function. This is an example of a common operation in strategy writing. LET bindings are introduced to allow 
Lisp code to compute prover command invocations having whatever arguments are necessary. 

(defstep add-eq (fnuml fnum2) 
(let ((formula1 (get-fnum fnuml)) 

(formula2 (get-fnum fnum2)) 
(left-sum (format nil "-A + "A" 

(right-sum (format nil ""A + "A" 

(case-step '(case ,(format nil ""A = "AI' 

(steplist '((skip) (then (assert) (assert))))) 

(argsl formulal) (argsl formula2))) 

(args2 formulal) (args2 formula2))) 

lef t-sum right-sum) ) ) 

(spread case-step steplist)) 
"Given tuo antecedent equalities a = b and c = d, introduce 

""%Adding terms from "A and 'A to derive a new equality") 
a new formula relating their sums, a + c = b + d." 

Fig. 12. Adding two antecedent equalities to generate a third. 

Figure 12 illustrates the extraction of expressions from CLOS objects within the current proof state. 
ADD-Eq accepts two formula numbers for antecedent equalities involving numeric values. It then introduces 
a new antecedent equality that sums the two equations, i.e., given equations a = b and c = d,  it forms 
a + c = b + d. The justification proof consists of two applications of ASSERT, which should be sufficient to  
prove the subgoal. 

To extract terms from the proof state, the formula objects are first retrieved using the Lisp function 
GET-FNUM described earlier. Assuming the formulae are equalities, their left hand and right hand sides can 
be accessed using the PVS functions ARGSl and ARGS2. When supplied as values to  the FORMAT function, 
Lisp renders their textual representations as PVS expressions. This allows ordinary string manipulation to  
be used to construct new PVS expressions from fragments of the current sequent. 

Having formed the new antecedent equality as a text string, an application of the CASE rule is used 
to  achieve the desired effect. In a more realistic strategy development effort, error checking code would 
be inserted at various places to check for invalid inputs. Strategy writers can decide how important such 
checking is for the intended purpose of their strategies. 

4.2 

Strategies geared to  high level proof automation, either of full proofs or of proof steps at a high conceptual 
level, almost invariably require use of several of the techniques described in Section 3. To illustrate how some 
of the techniques described in Sections 2 and 3 can be applied to developing an automatic strategy for proving 
lemmas belonging to  a particular class, we will show how the defined rule a d t - u n i q u e s t r a t  from TAME 
was developed.' Although a d t - u n i q u e s t r a t  was developed for TAME, it is useful in any context in which 
the DATATYPE construct is used: it allows the user to supply a one-step proof for any lemma that asserts that 

* A little history: development of TAME strategies began with an early version of PVS, in which the PVS step 
DECOMPOSE-EQUALITY was not a standard proof rule. With this rule, one can write a much simpler version of 
adt-unique-strat. The example in this section nevertheless serves to illustrate a general approach to creating a 
specialized high level strategy. 

Developing high level strategies: an example 
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if two elements of the same DATATYPE with the same constructor are equal, then the arguments to  which the 
constructor is applied to obtain these elements must be pairwise equal. Figure 13 shows an example DATATYPE 
and its "uniqueness properties" taken from the TAME specification of the basic TESLA multicast stream 
authentication protocol [8,2]. Such a lemma is a corollary of the fact that the elements of any PVS DATATYPE 
form a free algebra, that is, a term algebra with no nontrivial equalities between terms. Unfortunately, the 
automatic PVS proof procedures such as ASSERT, SIMPLIFY, and GRIND do not automatically "know" this 
information. Moreover, as can be seen from the proof of Receive-unique in Figure 14, one does not really 

actions: DATATYPE 
BEGIN 
nu(timeof : (f intime?)) : nu? 
SSend (Si:nat, Sc,Skl,Sk2:Key, Sm:Message): SSend? 
ASend (Ai:nat, Ac:Comit, Akl,Ak2:Key. Am:Message): ASend? 
Receive (RSentPacket:SentPacket): Receive? 

END actions 

nu-unique: LEMMA FORALL (tl, t2: (fintime?)): 

Send-unique: LEMMA FORALL (il,i2:nat, cl,c2.kll.k12,k21,k22: Key, 

nu(t1) = nu(t2) => ti = t2; 

ml~n2:Message): 
SSend(i1 ,cl ,kll ,k21 ,ml) = SSend(i2, c2 ,k12 ,k22 ,m2)  
=> il=i2 & cl=c2 & kll=k12 & k21=k22 & ml=m2; 

ASend-unique: LEMMA FORALL(il,iZ:nat, cl,c2:Comit, 
kll,k12,k21,k22: Key, m1,nQ:Message): 

ASend(i1 ,cl , kll , k21 ,ml) = ASend(i2 ,c2 ,k12 ,k22 ,m2) 
=> il=i2 & cl=c2 & kll=k12 & k21=k22 & ml=m2; 

Receive-unique: LEMMA FORALL (spl, sp2: Sentpacket): 
Receive(sp1) = Receive(sp2) => spl = sp2; 

Fig. 13. Example of a PVS DATATYPE declaration, and its "uniqueness lemmas". 

want to make an excursion in a PVS proof to  establish this property. 
The first step in developing adt-uniquestrat is to prove several uniqueness lemmas in PVS and look for 

patterns. Figure 14 shows the pattern to follow in establishing a uniqueness lemma for a constructor with one 

( " " 
(SKOLEM! ) 
(FLATTEN) 
(CASE "spl! 1 = RSentPacket(Receive(spl!l))") 
(("1" (CASE "sp2!1 = RSentPacket(Receive(sp2! 1))") 
(('1111 
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) 1 

("2" (ASSERT) 1) 1 
("2" (ASSERT) 1) 

Fig. 14. Proof of a uniqueness lemma for a DATATYPE constructor with one parameter. 

parameter: One can see that, after skolemizing and flattening the formula in the lemma, one does two case 
splits, each based on an equality of an individual skolem constant to  an application of the single datatype 
accessor function RSentPacket for Receive actions to  an application of the Receive constructor to  the same 
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(I, I t  

(SKOLEM 1 

(FLATTEN) 
(SPLIT) 
( ("I" (CASE " i - 1 = Si ( SSend (i- 1 , c-I , kl- 1 , k2- 1 .m-l) ) " ) 

( ( " 1" (CASE "i-2 = Si ( SSend (i-2, c-2, kl -2, k2-2 ,m- 2) ) " ) 

(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) 

(Wi-lll "i-2" ,OC-l" I, c-2" "kl-I" "k1-2" "k2-1" "k2-2" "m-I" "m-2")) 

( ( " 1 "  

("2" (ASSERT)))) 
("2" (ASSERT) ) )  1 

("2" (CASE "c-1 = Sc(SSend(i-1 ,c-1 ,kl-l ,k2-1 ,m-l)) ") 
(("1" (CASE "c-2 = Sc(SSend(i-2,~-2,kl-2,k2-2,m-2)) ") 
((''1" 
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) ) 

("2" (ASSERT) ) )  
("2" (ASSERT) 1)) 

("3" (CASE "kl-1 = Skl(SSend(i-1 ,c-1 ,kl-l ,k2-1 ,m-l))") 
( ("1" (CASE "kl-2 = Skl (SSend(i-2 ,c-2 ,k1-2 ,k2-2,m-2) )"I 
(("1" 
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) 

("2" (ASSERT) 1) 1 
("2" (ASSERT) ) ) )  

("4" (CASE "k2-1 = Sk2(SSend(i_l,c_l.kl~l,k2~l,m~l))") 
( ("1" (CASE "k2-2 = Sk2(SSend(i-2, c-2,k1-2.k2-2 ,rn-2)) ") 

(("1" 
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) 

("2" (ASSERT) 1) ) 
("2" (ASSERT)))) 

("5" (CASE "m-1 = Sm(SSend(i-1, c-l,kl-l,k2-l,m-l))") 
( ("1" (CASE "m-2 = Sm(SSend(i-2 ,c-2,k1-2 ,k2-2 ,rn-2) )"I  

(("1" 
(APPLY (THEN (REPLACE -1 +) (REPLACE -2 +) (HIDE -1 -2))) 
(REPLACE -1) 
(PROPAX) ) 
("2" (ASSERT) 1) 

("2" (ASSERT)))))) 

Fig. 15. Proof of a uniqueness lemma for a DATATYPE constructor with five parameters. 

skolem constant. The technique used in this proof can be adapted to handle the case of a constructor with 
more arguments. Figure 15 shows a proof of the uniqueness lemma for the constructor SSend: 

The proof of this lemma also begins with skolemization and flattening, but this is followed by a SPLIT 
command. By executing the proof, one can see that the SPLIT splits the proof into subcases, one for each 
accessor function of SSend, and therefore, calling (SPLIT) at the third step in the shorter proof would have 
no effect. In each subcase of the longer proof, the pattern in the shorter proof reappears. Moreover, this 
pattern is now more detailed: the two individual skolem constants correspond to  the variables retrieved by 
the accessor function, and the constructor S e n d  is applied not just to  these skolem constants, but to the 
two sets of skolem constants corresponding to  the variables in the S e n d  expressions in the hypothesis of the 
lemma. 

We now have enough information to  design a strategy. We can begin by defining a Lisp function that 
returns a command that follows the pattern of the subcases. Figure 16 shows the definition of such a function: 
mk-adt-unique-case, which takes as arguments the accessor function name, the two skolem constant names, 
and the two instantiated constructor expressions used in the pattern. We will expect to begin our strategy 
as the proof in Figure 15 begins: with a skolemization step, a (FLATTEN), and a (SPLIT). Following the 
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(defun mk-adt-unique-case (acc skconst-1 skconst-2 
sk-expr-1 sk-expr-2) 

(let ( (firstcase 
(format nil ""a"a"a"a"a"a" 
skconst-1 'I = I' acc "(" sk-expr-1 I ' ) ' I>) 

(secondcase 
(format nil ""a"a"a"a"a"a" 
skconst-2 'I = 'I acc "("  sk-expr-2 'I) ") 1) 

((spread (case ,secondcase) 
'(spread (case ,firstcase) 

((then (replace -1 +) 
(replace -2 +) 
(hide -1 -2) 
(replace -1)) 

(assert))) 
(assert) 1) ) 1 

Fig. 16. A Lisp function that computes a command to prove a uniqueness lemma case. 

(SPLIT) command, we then plan to use SPREAD to apply an appropriate subcase command to each of the 
su bgoals . 

To apply SPREAD, we we need a list of appropriate subcase commands, so we next define a Lisp function 
collectadt-unique-cases that returns such a list, as follows. Fkom the proof of the lemma SSend-unique 
in Figure 15, we see that there is a uniqueness case for every accessor function. Moreover, the two instan- 
tiated constructor expressions are the same for each uniqueness case, and the two skolem constants in each 
uniqueness case appear in these two expressions in the position corresponding to the accessor function. The 
function collectadt-unique-cases, whose definition is shown in Figure 17, expects as arguments 1) the 
list of accessors for a DATATYPE constructor, 2) a list of skolem constant names for the quantified variables 
in the uniqueness lemma for the constructor, which by convention are arranged in the lemma formulation 
so that the first two correspond to the first accessor, the second two correspond to the second accessor, and 
so on, and 3) and 4) two constructor expressions in which the skolem constants are correctly matched with 
their corresponding accessor positions. 

(defun collect-adt-unique-cases (acclist skconstlist 
sk-expr-1 sk-expr-2) 

(cond ((null acclist) nil) 
(t (cons 

(mk-adt -unique-case 
(car acclist) 
(car skconstlist) (cadr skconstlist) 
sk-expr-1 sk-expr-2) 

(cdr acclist) (cddr skconstlist) 
sk-expr-1 sk-expr-2) 1 1)) 

(collect-adt-unique-cases 

Fig. 17. A Lisp function that computes a list of uniqueness-case commands. 

Note that to work correctly when it is applied, collectadt-unique-cases must be given the appropriate 
arguments. Appropriate arguments can be computed from the formula in the lemma being proved. To 
compute the constructor expression instances corresponding the list of skolem constants, we need to know 
the names of the skolem constants. A convenient way to do this is to compute special skolem constant names 
from the list of bound variables in the lemma. Once the prover is invoked on the lemma, this can be done 
by using the Lisp function get-bindingnames (see Figure 18) to probe the proof state for the names of 
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(defun get-binding-names (sform) 

(defun mk-adt-unique-skolem-names (varlis) 
(mapcar 'id (bindings (formula sform)))) 

(mapcar # '  (lambda (varname) 
(concatenate 'string (string varname) "-uniq")) 

varlis) 
(defun get-sk-constructor-exprs (sform) 

(expre (argument (car (exprs (argument (formula sf orm) 1) ) ) ) ) 

Fig. 18. Three auxiliary functions used in datatype-unique-strat. 

the bound variables, and then applying the Lisp function mk-adt -uniqueskolemnames to transform this 
list into a list of skolem names for the bound variables. The two constructor expressions are found by again 
probing the proof state, this time using the function get-sk-constructor-exprs. 

Finally, we can define the proof rule adt-uniquestrat, using the def step macro, as shown in Figure 19. 
Note that both adt-uniquestrat and its auxiliary rule adt-uniquestrat-continue begin with a probe of 
the proof state *ps* to retrieve a value sf o m  representing the current proof goal. The expected proof goal 
for adt-uniquestrat corresponds to  a uniqueness lemma. The initial call to  (ASSERT) in adt-uniquestrat 
assures that PVS has filled in all the fields in the CLOS structure for this goal, rather than lazily leaving 
them unbound. Both proof steps use the technique of first computing and then applying a command. 

(def step adt-unique-strat 0 
(then 
(assert) 
(let ((sform (car (s-forms (current-goal *ps*)))) 

(bind-names (get-binding-names sform)) 
(uniq-sk-names 

( cmd 
(mk-adt-unique-skolem-names bind-names)) 

' (then (skolem 1 ,uniq-sk-names) 
(adt-unique-strat-continue ,uniq-sk-names)))) 

cmd) 1 
I l l 1  llll) 

(def step adt-unique-strat-continue (sk-name-list) 
(let ((sf o m  (car (s-forms (current-goal *ps*)) 1) 

(sk-constr-exprs (get-sk-constructor-exprs sform)) 
(sk-constr-expr-1 (car sk-constr-exprs)) 
(sk-constr-expr-2 (cadr sk-constr-exprs)) 
(constr-name (id (operator sk-constr-expr-1))) 
(all-constrs 
(constructors 

(adt (adt-type (operator sk-constr-expr-1)))))) 
(let ( (constr-form (car 

(select # '  (lambda (x) (eq (id x) constr-name)) 

(accessors (mapcar 'id (acc-decls constr-form))) 
(cases 

all-constrs) 1) 

(collect-adt-unique-cases accessors sk-name-list 
sk-constr-expr-1 
sk-constr-expr-2) 1 

(cmd ' (then (flatten) (spread (split) ,cases)))) 
cmd) 1 
IIII I t  11) 

Fig. 19. Defining a new proof rule adt-uniquestrat. 
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The effect of the part of adt-uniquestrat up to  the point where it calls adt-uniquestrat-cont inue is 
to  skolemize the formula in the lemma using the skolem constants computed by mk-adt-uniqueskolemnames. 
Thus, the value sf orm computed at the beginning of adt-uniquestrat-cont inue corresponds to the skolem- 
ized version of the uniqueness lemma. Moreover, adt-uniquestrat-cont inue is passed the list of skolem 
names as an argument so that it need not be recomputed. The step adt-uniquestrat-continue proceeds 
by first computing the arguments it needs to pass to the function collectadt-unique-cases, and uses the 
result of applying this function to  the arguments in its computation of a proof command in the form of a 
strategy, which it then applies. 

5 Discussion 

Chapter 5 of the PVS Prover Guide [lo, 111 contains much information useful to users who wish to  write 
their own strategies. This information includes a description of global variables used in the prover, the CLOS 
slots in a proof state, methods for retrieving formulae and recognizing the class of an expression, several 
useful PVS functions including argsl, args2, and gather-fnums, and the macros def step,  defhelper, and 
def strat for defining new rules and strategies. 

Several things could provide additional help for writing user strategies in PVS. One is simply easily acces- 
sible documentation of additional useful PVS functions and macros. Documentation of the helper functions 
used in the standard PVS strategies would eliminate duplication of effort on the part of PVS users who write 
their own strategies. 

Currently, the CLOS structure must be probed to determine how to retrieve many details of the infor- 
mation on the proof state. Explicit documentation of this structure could allow this “probing” to be done 
off-line. 

Strategies that explicitly reference the CLOS structure used for the internal representation of the PVS 

whose names and effects would remain the same despite any changes in the internal representation of the 
proof state is one possibility for reducing the sensitivity of user strategies to  any changes in the PVS 
implementation. 

Even without these extra aids, however, it is possible for users to develop sophisticated strategies to  serve 
their special needs-and to share with others. 

I proof state must rely on the stability of this internal representation. An extra layer of “retrieval” functions 
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